Generalized Gould-Hopper Based Fully Degenerate Central Bell Polynomials
نویسندگان
چکیده
منابع مشابه
Multi-variable Gould-Hopper and Laguerre polynomials
The idea of monomiality traces back to the early forties of the last century, when J.F. Steffensen, in a largely unnoticed paper [1], suggested the concept of poweroid. A new interest in this subject was created by the work of G. Dattoli and his collaborators [2], [3] It turns out that all polynomial families, and in particular all special polynomials, are essentially the same, since it is poss...
متن کاملA generalized recurrence for Bell polynomials: An alternate approach to Spivey and Gould-Quaintance formulas
Letting B n (x) the n-th Bell polynomial, it is well known that B n admit specific integer coordinates in the two following bases x i numbers and binomial coefficients. Our aim is to prove that, for r + s = n, the sequence x j B k (x) is a family of bases of the Q-vectorial space formed by polynomials of Q [X ] for which B n admits a Binomial Recurrence Coefficient.
متن کاملGeneralized Bell Polynomials and the Combinatorics of Poisson Central Moments
We introduce a family of polynomials that generalizes the Bell polynomials, in connection with the combinatorics of the central moments of the Poisson distribution. We show that these polynomials are dual of the Charlier polynomials by the Stirling transform, and we study the resulting combinatorial identities for the number of partitions of a set into subsets of size at least 2.
متن کاملBell polynomials and generalized Blissard problems
We introduce two possible generalizations of the classical Blissard problem and we show how to solve them by using the second order and multi-dimensional Bell polynomials, whose most important properties are recalled. © 2010 Elsevier Ltd. All rights reserved.
متن کاملOn an Hypercomplex Generalization of Gould-Hopper and Related Chebyshev Polynomials
An operational approach introduced by Gould and Hopper to the construction of generalized Hermite polynomials is followed in the hypercomplex context to build multidimensional generalized Hermite polynomials by the consideration of an appropriate basic set of monogenic polynomials. Directly related functions, like Chebyshev polynomials of first and second kind are constructed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Analysis and Number Theory
سال: 2020
ISSN: 2333-1100
DOI: 10.12691/tjant-7-5-1